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We present results of experiments on a turbulent grid flow and a few results on 
measurements in the outer region of a boundary layer over a smooth plate. The air 
flow measurements included three velocity components and their nine gradients. 
This was done by a twelve-wire hot-wire probe (3 arrays x 4 wires), produced for this 
purpose using specially made equipment (micromanipulators and some other 
auxiliary special equipment), calibration unit and calibration procedure. The probe 
had no common prongs and the calibration procedure was based on constructing a 
calibration function for each combination of three wires in each array (total 12) as 
a three-dimensional Chebishev polynomial of fourth order. A variety of checks were 
made in order to estimate the reliability of the results. 

Among the results the most prominent are the experimental confirmation of the 
strong tendency for alignment between vorticity and the intermediate eigenvector of 
the rate-of-strain tensor, the positiveness of the total enstrophy-generating term 
wi w j  si5 (si, = ;(&$/ax, + &#hi), o1 = Eijk au,/axk) even for rather short records and 
the tendency for alignment in the strict sense between vorticity and the vortex 
stretching vector w. = wjsu.  An emphasis is put on the necessity to measure 
invariant quantities, i.e. independent of the choice of the system of reference (e.g. 
si5 si5 and wi w, s ~ , )  as the most appropriate to describe physical processes. From the 
methodological point of view the main result is that the multi-hot-wire technique can 
be successfully used for measurements of all the nine velocity derivatives in 
turbulent flows, at least at moderate Reynolds numbers. 

1. Introduction 
Obtaining experimental information on the field of velocity derivatives in 

turbulent flows is motivated mostly by the desire to get information on their small- 
scale structure and dynamics, and in the first place vorticity (for a current review see 
Foss & Wallace 1989). Other quantities of importance include the rate-of-strain 
tensor and dissipation (e.g. see Antonia, Shah & Browne 1988 and references therein). 
In spite of the great number and variety of efforts as described by Foss & Wallace 
(1989), there are still many doubts as to the reliability of measurement methods of 
velocity fluctuation derivatives (e.g. Hussain 1986 ; Aref & Kambe 1988). 

For this reason (among others) we have chosen to concentrate our efforts on the 
grid turbulent flow as the most appropriate for allowing checks of reliability of the 
measurements, especially of velocity derivatives. The particular significance of this 
kind of flow follows from the fact that homogeneous (and quasi-isotropic) flow is free 
from external influences like mean shear, centrifugal forces (rotation), buoyancy, 
magnetic field, etc. which usually act as organizing factors, favouring the formation 
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of coherent structures of different kinds (quasi-two-dimensional, helical, etc.). These 
external influences in many cases can have a strong linear (masking) effect on the 
intrinsic nonlinear turbulent processes, as in situations described by rapid distortion 
theory (Hunt & Carruthers 1990). To quote Moffatt (1981, p. 40) ‘...rapid distortion 
theory in which nonlinear interactions between turbulent fluctuations are neglected 
for the duration of the distortion, again illustrates that in some respects shear flow 
turbulence can be easier than homogeneous turbulence (with zero mean flow) . . . ’. In 
other words in grid turbulence the nonlinear nature of turbulent flows is manifested 
more distinctly. We therefore believe that the turbulent grid flow remains one of the 
most suitable for studying the universal properties of turbulent flows and especially 
their small-scale structure. 

An additional advantage of this flow is that it is more accessible for measurements 
than, for example, boundary layers, especially in their small-scale structure close to 
the wall where it is necessary to employ very special microprobes (Willmarth & 
Sharma 1984; Ligrani, Westphal & Lemos 1989). 

Another aspect we would like to stress is the need to measure all the nine velocity 
derivatives. It is a consequence of the need to obtain invariant quantities (i.e. 
independent of the system of reference) which are best suited to describing physical 
processes. Information obtained from measuring quantities which are not invariant 
in the above sense may appear inadequate, as seen from the three examples below. 
The first example is one of the results of computations by Rogers & Moin (1987), 
reported by Narasimha (1990). They clearly demonstrated that the probability 
density distribution (p.d.d.) of the total dissipation is qualitatively different from 
that of the square of a single derivative (au,/az,)2; while the p.d.d. of the total 
dissipation is very close to log-normal, which is not the case for the single squared 
derivative which exhibits a tendency to have a square-root singularity a t  the origin. 
The second example is due to Corrsin & Fournier (1982). They showed that the term 
corresponding to viscous dissipation in the balance equation of turbulent kinetic 
energy for a single velocity component can have negative regions. This does not 
contradict the second law of thermodynamics which requires that the total 
dissipation, i.e. a quantity independent of the choice of the system of reference, has 
to be positive at  each space-time point. The third example is related to the enstrophy 
generation term wiwjsij (mi are the components of the vorticity vector, sij is the rate- 
of-strain tensor) - one of the most important quantities in the dynamics of turbulent 
flows. It was observed in our recent experiments (Dracos et al. 1990) that this term 
is positive for each record of duration 0.1 s, which for U = 7 m/s corresponds to the 
convection of a 70 cm long strip of fluid past the measuring probe, demonstrating the 
prevalance of the vortex stretching process. At the same time the term o:(au,/az,) 
and similar quantities like (a~,/ax,)~ commonly measured are negative in more than 
10% of such records. 

This paper is a much fuller version of the parts of Dracos et al. (1990) and Tsinober, 
Kit & Dracos (1991) dealing mostly with the turbulent air flow past a grid. In  $2 we 
describe the experimental facility briefly and the instrumentation in more detail. 
Section 3 starts with some information on all three components of the velocity field 
but concentrates on a variety of characteristics of the field of velocity derivatives 
with the emphasis on invariant quantities like full dissipation, the enstrophy- 
generation term and fourth-order quantities. Concluding remarks and discussion of 
the main areas for future improvements are given in $4. 
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2. Description of experimental procedures and probe performance tests 
2.1. Experimental facility and data acquisition 

The experiments were performed in the open-circuit wind tunnel with a rectangular 
cross-section 1.4 x 1.2 m2, at the Institute for Hydromechanics, ETH, Zurich. The 
grid was made of wooden rods 1.5 cm in diameter with square mesh of size 6 ern 
(solidity of 0.44). The free-stream turbulence in the tunnel was about 0.4-0.5%. The 
measurements were made at  distances x/M = 8, 17, 30, 38, 64, 90 from the grid and 
without the grid. Most of the measurements were made a t  a mean velocity of 7 m/s. 
Some measurements were also made in the outer region of a turbulent boundary 
layer at y/6 = 0.2 and 0.8. 

The data acquisition was performed by a system based on a MICROVAX 
computer equipped by an A/D converter (ADFO1, DEC) with a throughput 
frequency rate of 350 kHz and a sample and hold feature. The data sampling rate per 
channel was 10 kHz. The information sampled at each distance from the grid 
consisted of 50 separate buffers with 4096 sampling points in every buffer. Spectral 
characteristics were usually obtained using 200 records with 1024 points in each 
record. The duration of such a record is -0.1 s, corresponding in most of the 
experiments to a translation of 70 em. 

2.2. Twelve-hot-wire probe without commn prongs - motivations and development 
We used a multi-hot-wire technique similar to that suggested by Balint (1986), 
Balint, Vukoslavcevid & Wallace (1987, 1988), Balint, Wallace & Vukoslavcevid 
(1991) and Vukoslavcevid, Wallace & Balint (1991) which is based on use of arrays 
consisting of several hot wires (in Balint et al. only arrays with three hot wires were 
used). The voltages obtained from each wire are produced by all three instantaneous 
components of velocity, which are separated by means of a calibration procedure. 
This is an intrinsic feature and shortcoming of any method of this kind since any 
imperfection in the measuring system (mechanical, electronic, etc.) and/or in the 
experimental facility leading to an error in the signals from the hot wires gives rise 
to errors in all three velocity components. Therefore these errors can in general be 
correlated, and consequently, so will many quantities obtained from these velocity 
components. Errors originating in this way may become dominant when measuring 
quantities like (ua u,) ,  i + j (these quantities should vanish in grid turbulence), ut wt, 
etc. 

It is therefore of special importance to make every possible improvement to the 
measuring system, calibration procedure, etc. So far, we made the following 
improvements. 

One of the possible error sources of the conventional nine-hot-wire probes is the 
presence of a common prong in every array of three hot wires. This may lead to 
electronic cross-talking between these hot wires and consequently to unpredictable 
errors which may significantly contaminate the data. We have checked this point by 
exciting one wire in an array (with a common prong of common resistance < 0.1 R, 
i.e. as in the probe of Balint et al.) by a standard pulse signal used for testing the 
frequency response. The maximum amplitude of the output signal in the two other 
channels in the same array was about 30 % of the output signal of the channel under 
test instead of being zero as is the case in the new probe without common prongs. 
Thus, we have developed a multi-hot-wire probe without common prongs. The 
problem was solved by producing a compound, split prong (instead of the common 
one), consisting of several (three or four) tungsten wires coated by Teflon and glued 
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together. It is noteworthy that gluing requires a specially developed Teflon etching 
procedure. This, along with other reasons, did not allow the conventional sharpening 
of the tungsten prongs by thermal and mechanical treatment. Instead, an 
electrochemical erosion method was used, giving a thickness of the tips of the prongs 
of less than 20 pm. Getting rid of common prongs is also important for reducing the 
length of individual wires, since with common prongs one has to keep their resistance 
very large compared to the common resistance, which prevents the scale of the probe 
being reduced. 

We made further special checks of the problems arising from the use of common 
prongs. We simulated the common prong by connecting the central prongs by a 
common resistance of 0.1 Q with the wire resistance of about 9-10 Q. Among other 
problems we found that common prongs imposes a serious limit on the overheat 
ratio, which cannot be raised above 1.3-1.4, thereby increasing the influence of the 
ambient temperature as compared to higher overheat ratios. This alone shows how 
serious the problem of cross-talking via common prongs is. 

It is specially noteworthy that the inner prongs used instead of the common one 
were thinner and glued together very close to the tip ( - 2  mm) using microspacers 
30 pm thick. Thus this compound prong was x 80 pm only in overall diameter a t  the 
tip and in fact was half empty space. 

Another problem we encountered is that the single wire (i.e. the one without a 
partner) is incapable of picking up sufficient information on the corresponding 
velocity component even in a probe without common prongs. For example consider 
an array consisting of three slanted wires with two wires in the horizontal plane and 
the third in the vertical plane in a flow with horizontal mean velocity as, for example, 
in the grid flow. I n  this case to the first order all the three wires will sense the 
component of velocity fluctuations u parallel to the mean velocity; the two 
horizontal wires will sense the horizontal component of the velocity fluctuations w 
normal to the mean velocity, and only one vertical wire will sense the vertical 
component of velocity fluctuations u. Therefore much less information is obtained 
about the component v as compared to  u and w. Indeed, we have observed that the 
r.m.s. value of u and especially its gradients were systematically lower than those of 
w (both were smaller than the r.m.s. values of u). The addition of a fourth wire made 
the probe symmetrical in obtaining information on v and w. I n  fact, using a four-wire 
array we had four three-wire arrays. The instantaneous velocity vectors from each 
of them were used to form a mean, which was adopted as the true value of the 
instantaneous velocity vector. The results thus obtained were significantly more 
symmetrical in v and w and their gradients and were independent of rotation of the 
probe around its axis. We therefore built a probe consisting of twelve hot wires (3 
arrays x 4 wires). A schematic of the tip of one array and of the whole twelve-wire 
probe is shown in figure 1 (a), while figures 1 ( b )  and 1 ( c )  show a close-up of an 
individual array and of a twenty hot-wire probe (i.e. five arrays). The latter was 
made by adding two arrays to the twelve-wire probe used in the present experiments. 
The 21st wire is a cold wire (with aspect ratio more than 500) t o  account for ambient 
temperature variations and temperature fluctuations up to  1000 Hz. Details on the 
probe production technology, etc. are given in Tsinober (1988). 

Manufacturing the above probe required development of a sophisticated 
manipulator consisting of three manipulating units each having six degrees of 
freedom (three translational and three rotational), a special unit for manipulating 
2.5 pm wires and a unit for microwelding. Three manipulating units were necessary 
to  manipulat,e in an independent way the probe, the welding electrode, and the rod 
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FIQTJRE 1. (a) Schematic of a four-wire array and a twelve-hot-wire probe. ( b )  Close up of an array 
and (c) a 20-hot-wire probe with a cold wire. The twelve-hot-wire probe used in the present 
experiments consisted of the array in the centre and the two lower arrays in the picture. 
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carrying a small piece (2-3 mm long) of 2.5 pm wire glued to its tip. The special unit 
mentioned above in conjunction with one of the manipulating units with six degrees 
of freedom allowed small pieces of 2.5 pm tungsten wire to be glued at the tip of the 
steel rods. Note that microwelding the 2.5 pm wires to the 2&25 pm thick tips of the 
tungsten prongs is quite difficult even when the 2.5 pm wires are platinum plated and 
the tips of the prongs are nickel plated. Consequently the probe is rather fragile. 
Recently we improved the technology of the prong tips by tin plating. This makes 
the welding process much easier and more importantly the probe sturdy enough to 
be in atmospheric physics applications. 

2.3. Calibration procedure 
The third problem is that the existing calibration procedure (Balint et al. 1987, 1988) 
had the following shortcomings. (i) It employs restrictive assumptions about the 
symmetry of each array and the flow around the probe as a consequence of using the 
effective velocity approach for implementation of King's law for multi-hot-wire 
probes. This results in very high requirements on the geometrical precision of the 
probe and its alignment in the flow. Imperfections in both lead to uncontrollable 
errors (' spurious '). (ii) Very limited information, i.e. in vertical and horizontal planes 
only, is being used to obtain the calibration. 

For the above reasons, a new calibration procedure was developed, which is 
essentially an extension to three dimensions of the least-square polynomial 
approximation used previously in one and two dimensions by Blackwelder & 
Haritonidis (1983), Chang 81, Blackwelder (1990), Oster & Wygnansky (1982), TSI 
(1978), Wilmarth & Bogar (1977). In the last work an approach based on look-up 
table was implemented which is essentially the same. Finally, corresponding to our 
work published in Dracos et al. (1990) and Tsinober et al. (1991), Dobbeling, Lenze 
& Leuckel ( 1990) independently developed a three-dimensional calibration procedure 
analogous to ours for a four-wire probe similar to that shown in figure 1. 

For each combination of three wires in each array (i.e. total 4 x 3 = 12) a 
calibrating function is produced which gives the relation between the three velocity 
components and the three voltages obtained from each wire in the array. These 
calibration functions for every velocity component in each array were constructed as 
three-dimensional polynomials of the fourth order using Chebyshev orthogonal 
polynomials. Each such calibration function requires determination of 35 coefficients, 
which were found from 35 equations obtained by a least-square method using the 
information from measurements at  81 space points (9 yaw and 9 pitch angle 
positions) and 7 velocities. Owing to the three-dimensional character of the 
calibration the use of Chebyshev polynomials was essential to reduce the errors and 
to increase the effectiveness of the determination of the coefficients. The pitch and 
yaw angles varied within the interval f 12'. 

To produce this amount of information, it was necessary to develop an automatic 
calibration unit. This consisted of two miniature stepping motors and a mechanical 
arrangement producing yawing and pitching while the tip of the probe remained in 
a fixed spatial position. This avoided errors due to flow inhomogeneities. The 
calibration unit was driven by a controller specially produced for this purpose. One 
calibration required about 30 min. 

The described calibration procedure requires neither very precise alignment of the 
probe with the mean flow, nor extreme precision of its construction. This was 
checked by putting the probe at small angles to the mean flow and rotating the probe 
at various angles (not small) with respect to its axis. The results were essentially the 
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X l L  8 17 30 38 64 90 B. layer y/6 

150 64.4 26.5 20.1 15.0 7.95 
207 94.4 41.2 31.0 23.8 12.4 
219 99.6 42.6 28.6 24.9 13.2 
175 72.8 32.4 23.7 14.7 9.6 
143 58.0 24.2 19.6 11.1 7 .O 
184 79.3 35.2 26.3 16.4 10.8 
175 73.9 32.1 24.5 15.0 9.5 
186 81.4 35.8 27.0 17.7 12.1 
152 66.3 28.9 18.4 13.9 9.1 

TABLE 1. Values of the matrix ( (au,/ar,)2)i in s-l 

0.7 0.2 

98.9 114 
150 184 
136 154 
122 139 
106 129 
129 146 
122 144 
136 186 
106 131 

X l L  8 17 30 38 64 90 B. layer y/8 

0.7 0.2 

(U$ 52.6 19.7 17.5 14.4 13.7 8.7 80 72 
(u:Y 43.8 23.5 14.3 11.7 9.0 7 .O 55 38 
<u:>t 41.3 23.4 13.8 11.9 8.8 6.7 72 72 
(02)’ 275 118 52.6 30.6 24.9 16.8 201 252 
(0:); 303 134 57.5 40.9 31.1 17.5 196 223 
(0:); 292 131 57.0 42.6 30.6 16.9 209 248 
Re, = ulA1/v 96 88 74 67 82 63 415 290 

TABLE 2. Values of r.m.9. of velocity fluctuations in m/s x lo2 and vorticity fluctuations in s-l 

same except that they were somewhat better when two wires of each array were 
located in the plane of pitch and the other two in the plane of yaw. 

2.4. Multi-hot-wire probe performance tests 
The above modifications led to a considerable reduction of errors and improvement 
of results. For example, the isotropy relations between the terms of the matrix 
((au,/az,)z)  were satisfied within a 15% error (previously 30%, see Kit et al. 1987, 
1988) as can be seen from table 1 (for isotropy relations between the terms of the 
matrix ((i3ui/ax,)2) see, e.g. Hinze 1975, pp. 188-189). The r.m.8. values of velocity 
fluctuations are shown in table 2. The incompressibility-Taylor hypothesis test 
(correlation coefficient C, between aul/ax, = - U-’ au/at and - au2/axz - au3/ax3) 
produced a value of about 0.7 without any smoothing or other similar processing of 
the raw data, while previously Kit et al. (1987, 1988) with a nine-hot-wire probe with 
common prongs obtained C, - 0.35. Balint (1986) reported values of C, varying from 
0.25 to 0.37 which were obtained for various vertical positions of the probe in the 
boundary layer. Unfortunately the incompressibility-Taylor hypothesis test was 
never mentioned in the subsequent papers reporting results with nine-hot-wire 
probe (Balint et al. 1987, 1988, 1991; Vukoslavcevid et al. 1991) in spite of the 
obvious importance of this check, since it employs the derivatives of velocity 
fluctuations only and thereby characterizes the reliability of measurements of 
instantaneous velocity gradients. 

Note that the checks of the kinematic relations involving velocity derivatives 
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FIQIJRE 2. (a) Mean velocity profile in a boundary-layer flow, u* = 0.47 m/s, free stream velocity 
U, = 12 m/s; (b) Mean velocity gradient: dlJ,/dy = 5.15u*/y; A, direct measurement by a multi- 
hot-wire probe. 

given in $3.3.1 can be seen also as characterizing the reliability of measurements of 
instantaneous velocity gradients. We have also made the simpler check of comparing 
the mean velocity gradients in several points in a boundary-layer flow deduced from 
Pitot tube measurements and those obtained directly by the multi-hot-wire probe 
taking an average of the first-order difference of the instantaneous velocity at  two 
appropriate arrays. The mean velocity profile is shown in figure 2(a) in which the 
straight line corresponds to a logarithmic profile UJu* = 5.75 log (y/yo) with 
u* = 0.47 m/s at  free-stream velocity x 12 m/s. The gradient of this velocity 
dU,/dy = 5.75u*/y is shown in figure 2(b) together with the direct measurements 
of the velocity gradient by the multi-hot-wire probe at four points located in the 
logarithmic region of the velocity profile. The agreement is very good (the point at 
y = 45 mm is in the region where the velocity profile starts to deviate from the 
logarithmic one), especially taking into account that the velocity difference at the 
two arrays was in the range 3-12 cm/s, i.e. only 0.25-1 'YO of the mean velocity. 

We would like to point out that our main aim in presenting some results on the 
boundary-layer flow is to provide additional support for the proper performance of 
the probe. They represent only a small part of the available results on the boundary 
flow, which will be published elsewhere. 

Finally, we have made a rather special check on the performance of several four- 
wire arrays compared to a single-wire probe. This has been done using five-wire 
probes as shown in figure 1 ( a ) .  The fifth wire (the long one - 1 mm), which was 
normally used as a cold wire, in this case was operated as a hot wire. It was located 
-0.15 mm in front of the tip of the multi-hot-wire array and therefore was 
essentially at the same point. It required a special effort to position this wire just in 
front of the middle of the tip of the array to avoid thermal interference between the 
single wire and the four-wire array. Typical results of such a comparison are shown 
in table 3, which contains the mean velocity U,, the r.m.s. of the streamwise velocity 
fluctuations u1 measured by the four-wire array and by the single wire, and the 
correlation coefficient CU1 ~l between the two measurements of these fluctuations at  
three locations from the boundary. One can see that the agreement between the two 
simultaneous measurements is really very good. 

It is noteworthy that the derivatives au2/ax2 and au,/ax, have been obtained as 
one sided (figure 1). In our previous paper (Dracos et al. 1990) we asserted 
erroneously that C, is limited from above by a value less than one independently of 
how small the probe is. However, assuming isotropy in small scales and 
approximating the longitudinal correlation function as f ( r )  = 1 -ar2 + br4 it can be 
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y (mm) = 10 y (mm) = 63 
y+ = 310 y+ = 1970 y+ = 3200 

Array Wire Array Wire Array Wire 

U, (m/s) 7.900 7.834 11.064 11.128 11  375 11.948 
u1 (m/s) 1.046 1.055 0.601 0.627 0.250 0.259 

TABLE 3. Comparison of performance of a four-wire array against a conventional single-wire probe 
at three vertical locations in the boundary layer, y+ = yu*/v. (The position y = 103 mm corresponds 
to the outer edge of the boundary layer.) 

y (mm) = 103 

0.969 0.987 0.988 c,, u, 

easily shown that within these assumptions C ,  < 1 for a one-sided approximation of 
velocity derivatives, while C ,  = 1 for their central approximation. This shows why 
it is strongly desirable to use a five-array probe (i.e, twenty hot wires in total) which 
will enable better evaluation of any other quantities involving velocity derivatives 
like vorticity, helicity density, enstrophy production term, etc. An additional 
important benefit from a five-array probe would be that second derivatives of the 
velocity field could also be evaluated a t  the same point. The results obtained using 
such a probe for several flows will be reported elsewhere. 

Along with the above-mentioned improvements some shortcomings still remained. 
The main one is that one-point correlations (ul uz)/u; u; and <ul u,)/u; uj, where ui 
is the r.m.s. value of ui, were about 0.1-0.15, i.e. were not as close to zero as they 
should be in ideally isotropic turbulence (to our knowledge there are no published 
results on these quantities for grid turbulence). As mentioned above this happens 
because of intrinsic imperfections of the method leading to errors in u,, u2, ug which 
are correlated, as well as because of the imperfections of the flow. Our belief is that 
these can be reduced further by improving the calibration of the probe, e.g. the 
mechanical precision of the calibration unit, by using smaller steps in pitch and haw 
in the vicinity of zero instead of uniform stepping. 

Finally, the problem of scale resolution should be specially mentioned. This 
problem is well known both in laboratory and numerical experiments with the 
obvious difference that in the first case one has the true flow even when some range 
of small scales is not resolved. In  our experiments the overall probe scale was 
typically 2-3 times smaller than the Taylor microscale and 4-5 times larger than the 
Kolmogorov scale, i.e. the scales reasonably resolved were of the order of the Taylor 
microscale. 

Since the velocity gradients on the scale of an individual array at every instant are 
different from those resolved we did not see any reason to use the latter ones to take 
into account the former ones as has been done by Balint et al. (1986, 1988). Their use 
of nine equations containing three velocity components and six velocity gradients to 
resolve the velocities at each array implies the very severe assumption that the 
velocity gradients across an array are the same as those across the whole probe. This 
is certainly not true for a flow like our grid flow, since the spatial resolution of the 
probe is not better than 2.5 mm (its overall size), while the Kolmogorov scale is of 
the order 0.5mm. Consequently the gradients due to the eddies in the interval 
between 0.5 and 2.5 mm are not being taken into account. This in turn can lead to 
erroneous results. Indeed our own experience in using the calibration procedure 
developed by Balint (1986), Balint et al. (1987, 1988, 1991) and VukoslavEevid et al. 
(1991) was very discouraging. In  particular when we used their full set of calibration 
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equations the deviation from isotropy of velocity derivatives for turbulent grid flow 
was considerably higher than when the velocity gradients at each array were 
neglected. Obviously, to overcome this problem the overall scale of the probe should 
be of the order of the Kolmogorov scale but in this case the velocity gradients at the 
array scale will be negligible and therefore the calibration procedure will not require 
to account for them. In any case decreasing the size of individual arrays is essential 
and will lead to both improvements. With smaller arrays the influence of velocity 
gradients across them will be reduced and their mutual interference will diminish if 
the overall scale of the probe is kept the same. 

3. Results 
3.1. Velocity $fluctuations 

The r.m.s. values of velocity fluctuations exhibit some degree of anisotropy in that 
the r.m.8. of the longitudinal velocity fluctuations u1 is about 10-20 YO higher than 
that of u, and us. The r.m.8. values of u, and us are equal within -1%. It is 
noteworthy that all the three arrays produced essentially the same results. 

It is also of interest that the same is true of the one-dimensional spectra of ul, u,, 
us which are shown in figure 3. Again, all six spectra of u2 and u3 (from the three 
arrays) are essentially the same, indicating a high degree of isotropy in the plane x,, 
x 3 ;  k, = 27tfM/U. The anisotropy of the velocity field is located mostly in the large 
scales, which is seen from a comparison (see figure 3) of the energy spectrum E,(k,) 
of u1 calculated from the isotropy relation 

E,(k,)  = 2k, Ik: t-2E,(t) dt, 

where E,(k,) is the energy spectrum of u,. 
It is of interest to look also at  the three-dimensional spectrum E(k) ,  computed 

from the relation 

using an appropriate smoothing procedure for E,(k) and E,(k) before taking the first 
derivatives (see figure 3). A comparison between k2E(k) and Q(k) computed in a 
similar way to the field of vorticity fluctuations is shown in figure 4 and the 
agreement between the two is quite reasonable, especially at large k as it should be 
if isotropy really does exist in the small scales. 

As mentioned above, the one-point correlation coefficients (u,  u , ) /u~  ui and 
( u l u 3 ) / u ~ u ~  were about 0.1-0.15, i.e. were not as small as they should be in grid 
turbulence. In spite of this the triple-correlation behaviour was quite satisfactory. 
Two of them, ( u ~ ( x ) u , ( ~ : + r ) ) / u ; ~  and -2(u;(x) u,(x+r))/u; ui2, shown in figure 5 ,  
should be equal if isotropy is assumed. It is seen that they are in reasonable 
agreement with the results for an air grid flow obtained by Frenkiel, Klebanoff & 
Huang (1979). The fourth moments of all the three velocity components, shown in 
figure 6, behaved in a quasi-Gaussian manner as did the fourth moment of the 
streamwise velocity component in Frenkiel et al. (1979). 

3.2. Velocity-vorticity relations 
Obviously these relations are among the most difficult to measure since energy is 
concentrated in much larger scales than the enstrophy. Therefore, the results 
concerning the tensor h,, = u, w:, should be considered as preliminary and qualitative 
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0,  Frenkiel et al. (1979). 

only. The off-diagonal terms of hi, are related to the Lamb vector, and the diagonal 
ones to helicity. 

It is of special interest to look a t  some properties of the Lamb vector 

A, = ei5, h,, = cl,, OJ, ui ( A  = o x u). 

Shtilman & Polifke (1989) have found in their direct numerical simulations of 
decaying box turbulence that the Lamb vector contains a substantial potential part. 
They calculated the probability density function of the angle between the Fourier 
image of the Lamb vector and the wave vector k and found that there was a high 
probability that they were aligned. The implication is that in physical space the 
Lamb vector should consist mostly of a potential part. A large contribution to this 
effect may be due to purely kinematic reasons as shown by Tsinober (1990). 
Experimentally one can have a look at correlations of the type (h,(z)A,(z+r)), 
a = 1 , 2 , 3  and corresponding spectra of A,. Simple relations exist between one- 
dimensional spectra and correlation functions for pure potential vectors assuming 
isotropy. These are E i p )  = -k,dEiy\/dk, (e.g. see Monin & Yaglom 1975). One- 
dimensional spectra Et(k,)  and Et,  3(kl) of A, and A2, respectively are shown in figure 
7 together with the curve Eipotential computed from the Et(k , )  using the above 
relation for a potential vector field. The qualitative indication is that the Lamb 
vector contains a substantial potential part. This is seen from the comparison of the 
spectra obtained for the real Lamb vector (figure 7a) and those for the Lamb vector 
obtained as a vector product of two independent vectors (figure 7 b ) .  These vectors 
were chosen as velocity and vorticity a t  large time separation. In the latter case, the 
spectra for all components are identical in the high-k region, while for the real Lamb 
vector the spectrum of A, is higher, which corresponds to the tendency of having a 



The field of velocity gradients in turbulent flows 181 

FIQURE 7. 

. . . . . . . . , 

i (a) 

0.25 
- 1  0 1 

for w and 

cos (a) 
FIQURE 8. Probability density distributions of the cosine of the angle between vorticity and 

velocity vectors: (a )  x / M  = 8;  (a) x/M = 17 ; ( c )  x / M  = 64;  ( d )  boundary layer: y/8 = 0.2. 

substantial potential part. Still, the spectrum Et, 3,potentia, computed from the 
isotropy relation is different from the real ones, which indicates that the solenoidal 
part of the Lamb vector is far from negligible. 

The alignment between velocity and vorticity (see figure 8) is not as clear as in our 
previous experiments (Kit et al. 1987, 1988; Tsinober et al. 1988). However, an 
important feature is that starting from X/M = 17, the probability density function 
of the cosine between u and o becomes asymmetrical, clearly indicating lack of 
reflectional symmetry in the flow. The quantity ( ( u - u ) 2 ) / ( u 2 ) ( w 2 )  = 0.4 in all the 
experiments and distances from the grid are as in our previous experiments. 
Although the mean helicity (hi*) = ( u - a )  was positive, in almost all experiments its 
value was within the experimental error. 
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XlM 8 17 30 38 64 90 B. layer y/6 

0.7 0.2 

I 1  0.80 0.82 0.85 0.91 0.84 0.84 0.81 0.78 
4 0.78 0.85 0.91 0.89 0.93 1.06 0.59 0.32 

TABLE 4. Values of I, = ~ ( W ~ > / ( S , , S , ~ ) ;  I ,  = - f ( ~ , w , 9 , ~ ) / ( 8 , , 8 , ~ 8 * , )  

~~ 

XlM 8 17 30 38 64 90 B. layer y/8 

0.7 0.2 
4 7.1 7.3 7.8 7 .O 6.6 8.2 7.8 8.6 
J8 7.7 7.2 9.4 7.0 12.0 10.5 6.8 6.8 
JJ 6.8 8.8 6.6 7.4 7.7 6.3 6.8 6.5 
Kl 8.5 8.8 11.6 11.3 7.8 12.2 7.2 6.7 

12.3 13.8 17.3 11.0 24.0 24.1 10.2 36.0 

TABLE 5. Values of Ju = (8,J8,,)/((auu/ax=)2) and K,  = -(wt~js~J)/<(~uu/~xu)s), a = 1,2,3 

Ks 10.5 10.9 11.8 22.2 24.5 29.0 4.8 1 .oo K2 

3.3. Derivatives of velocity juctuations 
3.3.1. Kinematic relations 

Along with calculations of the matrix ( (au,/axJ2) and the incompressibility- 
Taylor hypothesis test mentioned above a more delicate test of velocity derivatives 
measurements was carried out. It is based on the relation imposed by the condition 
of homogeneity only on the one-point triple correlations of the velocity derivatives. 
This condition was obtained by Townsend (1951) and Betchov (1956) and is as 
follows : 

where sI, = g(au,/ax,+au,/ax,) is the rate-of-strain tensor and w k  = ~ ~ , ~ a u , / a x ~  is the 
vorticity vector. 

The value of the ratio -a(wi u, sI,)/(stj Sjk  S k t )  obtained from experimental data at  
different values of x/M is given in table 4. It is seen that the experimental values for 
the grid flow are quite close to unity, except for the cross-section closest to the grid, 
while for the boundary layer this ratio is essentially different from unity as can be 
expected for a non-homogeneous flow. 

Many more relations between triple correlations of velocity derivatives are 
imposed by isotropy (e.g. Townsend 1951 ; Champagne 1978, p. 106). The one which 
is generally used relates to the enstrophy generation term with ( ( ~ u , / ~ s , ) ~ )  : 

( S t j S 5 k S k I )  = - % w t w j s i j ) ,  

(mi  w, si,) = - ~ ( ( a u , / a ~ , ) 3 ) .  

The values of the ratio (q W,S~,)/((~U,/~~,)~) (no summation over Greek subscripts 
1,2,3) are shown in table 5. It is seen that these values are mostly smaller than 17.5 
most probably due to insufficient resolution of the small scales. 

3.3.2. Dynamically relevant quantities 
First we show some characteristics of dissipation fluctuations 11 = E - ( E )  (table 6) :  

(v2)i/(e), skewness S, and flatness F,. All these quantities are essentially constant 
in grid flow, i.e. independent of the distance from grid. The same is true for the ratio 
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FIQURE 9. One-dimensional spectra of (a) energy E(k, ) ,  enstrophy B(k,) and dissipation e(kl), 
and (b) fluctuations of dissipation t(kl) and fluctuations of enstrophy C(k,); x/M = 30. 

8 17 30 38 64 90 B. layer y/S 

0.7 0.2 

2.38 2.29 13.0 106.5 

XlM 

( q * ) t / ( e )  1.36 1.36 1.37 1.40 1.36 1.36 1.89 3.65 
2.31 2.31 2.40 2.56 
8.55 8.44 9.36 10.73 9.29 8.06 624 1.97 x lo4 

8 7  

F7 

TABLE 6. Characteristics of dissipation fluctuations 

~~ 

x/M 8 17 30 38 64 90 B. layer y/S 

0.7 0.2 
0.41 0.46 0.50 0.50 0.50 0.50 0.56 0.35 
0.32 0.41 0.44 0.55 0.40 0.37 0.32 0.045 
0.31 0.34 0.38 0.33 

Sl 
8% 
S8 0.20 0.14 0.68 -1.61 
s 0.12 0.13 0.16 0.16 0.14 0.15 0.16 0.06 

TABLE 7. Values of S, = - ((au,/ax,)s>/((au,/ax,)*)~ and s = (~,0,8,,)/<0~)/<(8~,8,,)i 

of the spectral densities of e and q (an example of their spectra is shown in figure 9). 
This seems to be an indication that these quantities are associated with universal 
properties of the grid flow in small scales. It is noteworthy that the ratio ( q 2 ) i / ( e )  
is a measure of dissipation intermittency (see e.g. Chen et a2. 1989). 

The skewness for the three velocity derivatives are shown in table 7 along with the 
quantity <wsw,8f,)/(~2)<8U~U)f. It is seen that 8, agrees well with values known 
from previous experimental investigations (e.g. Arora & Azad 1980 and references 
therein). It is also of interest to compare the values of S, with those obtained by 
Herring & Kerr (1982) and Kerr (1985) in numerical simulations of decaying 
turbulent flow in a box forced at large scales. In the range of Re, relevant for our 
experiments (60-90) they obtained in both simulations that S, = 0.5. Values of S,  
and S, obtained in our experiments are considerably smaller and are in agreement 
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FIGURE 10. Probability density distributions of dissipation (curve 1) 
and 15 (aul/azl)2 (curve 2);  x / M  = 30. 

1 o8 
FIGURE 11.  Probability density distributions of the enstrophy-generation term w ~ w , ~ , ,  (curve l) ,  

and 17.5 (a~ , / i 32 , )~  (curve 2 ) ;  x/M = 30. 

with preliminary measurements in Kit et at. (1987), though for isotropic flow S, 
should be equal. Our impression is that S,  and S, are smaller than S,  mainly because 
of various imperfections of the measuring system. This question requires further 
investigation. 

We would like to emphasize that (see table 7) measurements of the enstrophy- 
generating term show that its mean is essentially a positive quantity. (This was first 
realized by Taylor 1938.) It was obtained as an average from 200 records each 1024 
points long with s interval between two adjacent points (i.e. 0.1 s record 
duration or x 70 cm record length). For each such record the enstrophy-generating 
term was positive. It is noteworthy that the quantity (w;(au,/ax,)) computed for 
each record was negative for more than 10Y0 of the records. As mentioned in the 
introduction this points to the importance of measuring quantities that are invariant 
with respect to our choice of the system of reference, i.e. to measure wi wj  au,/aq. The 
probability density distribution of E compared with those for (au,/&q)2 confirm this 
point (figure 10) and is in agreement with the computations by Rogers & Moin (1987) 
(see Narasimha 1990). The same point is clearly also seen from comparing the 
p.d.d.'s of wiwjsi j  and ( ~ u , / a ~ , ) ~  (figure 11). Note the asymmetry in the p.d.d. of 
oi w j  st, - it is larger at  positive w, oj stj which is consistent with the positiveness of 
the enstrophy-generating term (see also figure 16 and table 5 ) .  
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0 - 

x /M 8 17 30 38 64 90 B. layer y/6 

0.7 0.2 Gaussian 

Fl 3.97 3.99 4.07 4.27 3.95 3.97 9.09 33.8 3 
F, 4.29 4.42 4.48 4.72 4.62 4.46 11.5 46.4 3 
F3 1.04 0.93 0.88 0.88 0.76 0.82 2.09 3.77 1 
F4 4.77 4.90 5.10 5.30 5.21 4.95 12.3 34.9 3 

TABLE 8. Fourth-order moments of velocity derivatives 

Fourth moments of velocity derivatives defined as 

where s2 = si,si, are shown in table 8 along with their uncorrelated (i.e. Gaussian) 
values. The values of Fi are in agreement within 20 % with the computational results 
of Siggia (1981) and Kerr (1985). It is noteworthy that, as in computations by Kerr 
(1985), in our experiments F4 > F2 > Fl, i.e. the qualitative tendencies are the same. 
Also as in their computations, in our experiments F, is smaller than 1 implying some 
alignment in the small-scale turbulent structures. Since F3 is the normalized variance 
of the vortex stretching vector W, = wi gi,, F3 < 1 means that there is some reduction 
of the nonlinear term in the vorticity equation in the sense that ( Wz) is smaller than 
its corresponding Gaussian value. This reduction is a small-scale effect different from 
the reduction of the nonlinearity in the Navier-Stokes equation (Kraichnan & Panda 
1989; Shtilman & Polifke 1988; Tsinober 1990; She, Jackson & Orszag 1991). 
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FIQURE 13. Probability density of the cosine of the angle between vorticity end the 
intermediate eigenvector a2 for (a) a, < 0; and ( b )  a, > 0; x / M  = 30. 
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FIQURE 14. Probability density distribution of the intermediate rate of strain uz;  x / M  = 30. 

It is also noteworthy that in our experiments F,, F2 and F4 were about 20 YO smaller 
and F3 about 20 % larger than in numerical simulations, i.e. all experimental values 
of 4 are closer to their Gaussian values, which is consistent with the presence of 
random noise in the experiments. 

3.3.3. Some local properties 

Among the most basic questions about the properties and dynamics of the 
vorticity field in turbulent flows are the relations between the vorticity field and the 
field of the rate-of-strain tensor. Ashurst et al. (1987) discovered in their computations 
quite a peculiar relation between these fields. They found that the vorticity tends to 
be aligned with the intermediate eigenvector of the rate-of-strain tensor and that the 
strain in this direction is mostly positive (80%). Our experimental data clearly show 
the same tendencies (see figure 12), though the alignment is somewhat weaker than 
in the numerical simulations. Still, the effect is very large, e.g. the maximum to 
minimum ratio in the p.d.d. of the cosine of the angle between o and a2 is more than 
4. The alignment between a2 and o is considerably stronger for a2 > 0 than for 
a2 < 0 (see figure 13). This agrees with our observations that in 65% of the sample 
points the intermediate principal rate of strain was positive in agreement with 
Betchov’s (1956) conclusions and numerical computations by Ashurst et al. (1987). 
This last result is seen better on figure 14 in which the p.d.d. of the normalized 
intermediate rate of strain a2/s1/6 is shown, where s = ( a ~ + a ~ + a ~ ) ~ .  Its most 
probable value is x0.4. The important point is that the most active part of the 



The Jield of velocity gradients in turbulent Jlows 187 

1 

0 

I . .  
. .  . .  

s . .' 

I 

- 1  1 . 1  
_.. , . . . .  I I I I I I I 

0 5 x  10' 

FIGURE 15. Scatter plot of the normalized intermediate rate of strain aB versus the energy 
dissipation ; x/M = 30. 
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FIGURE 16. Probability density distribution of the cosine of the angle between the vorticity and 
the vortex stretching vector. x / M  = 30. 

turbulence is located in neighbourhood of this value, which is seen, for example, from 
the scatter plot of a,/sz/6 versus the energy dissipation shown in figure 15. 
Qualitatively similar behaviour, i.e. maximum activity around a 2 / s  4 6  = 0.4, is 
exhibited in scatter plots of a / s  4 6  versus enstrophy and the enstrophy-generation 
term. Note that the scatter plot shown in figure 15 is very similar to the one obtained 
by Ashurst et al. (1987) (see their figure 1). Also in agreement with their results is the 
most probable relation between the principal rates of strain, e.g. at z / M  = 30 this 
ratio is -3.8:1:3.1 while Ashurst et al. obtained -4:1:3. 

7 FLM 242 
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FIQURE 17. Time series of various quantities for one record (70 ern long) in air flow; x /M = 30. 

Quite reasonable agreement between the experimental results presented here and 
the numerical ones obtained by Ashurst et al. (1987) is a strong indication of the 
reliability of both, since for such subtle effects it is quite unlikely to be just a, 
coincidence. 

We have seen above that the mean of the enstrophy-generating term is essentially 
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positive (table 6) and moreover it was positive for each record 70 cm long. This is a 
consequence of the prevalence of the vortex stretching process over the vortex 
compression. The above irreversible tendency can be characterized locally by 
considering the p.d.d. of the cosine of the angle between the vorticity vector o and 
the vortex stretching vector W introduced earlier, (figure 16). As could be expected 
this probability density distribution is strongly asymmetrical and is much larger in 
the region 0 = 0" than in the region 0 = 180". In other words there is a strong 
tendency for alignment between w and Win the strict sense, i.e. a tendency for them 
to be parallel but not antiparallel. This result along with the positiveness of the 
enstrophy-generation term are manifestations of the strong non-Gaussianity of the 
field of velocity derivatives. 

Finally in figure 17 we show the time series of various quantities during one record 
(i.e. 70 cm long). Perhaps the most spectacular is the behaviour of the enstrophy- 
generating term which exhibit bursts of extremely large amplitude (from 1 to 5 such 
bursts in one record) : quite an intermittency. Thisafnplitude is up to 50 times larger 
than the average and more than 60% of the contribution to the average of the 
enstrophy-generating term comes from the fluctuations with amplitude larger than 
three times the average! The scale of these extremely violent events (or, if one likes, 
very active structures) is -0.5-1 cm and in between there exist extremely inactive 
regions (structures). The scale of the latter is an order of magnitude larger than that 
of the active events. It is noteworthy that the same kind of behaviour is observed in 
the boundary layer (in its outer part). A t  this stage we venture to suggest that the 
enstrophy-generating term, being an invariant (i.e. independent of the system of 
coordinates and in the Galilean sense), seems to be one of the most appropriate 
quantities to characterize the structure nature of grid turbulence as well as shear 
turbulence. 

4. Concluding remarks and future work 
Our first conclusion is of a technical nature. The results obtained and their 

comparison with those from direct numerical simulations clearly indicate that multi- 
hot-wire techniques can be successfully used for measurements of all the nine velocity 
derivatives in turbulent flows at least at  moderate Reynolds numbers. Our belief is 
that the technique can be considerably improved in two ways : by using a five-array 
probe; and by the calibration procedure being done not by homogeneous stepping 
yaw and pitch angles but rather in much denser steps (starting with -0.25") close 
to zero. Our hope is that this will considerably improve the incompressibility- 
Taylor hypothesis test and the performance of the system in measuring the off- 
diagonal terms of the Reynolds stress tensor and the velocity/vorticity tensor. Some 
improvement of spatial resolution can also be achieved by reducing the scale of the 
probe. There is no problem in reducing the diamezer of each array down to 0.5 mm 
or even less. We already have experience in producing such an array 0.4 mm in 
diameter using Platinum - 10 % Rhodium wire 1.25 pm in diameter. However, it  
seems that the requirements for spatial resolution are not as strict as was thought 
before, at least, for grid turbulence. The reason is that quantities like turbulent 
dissipation and the enstrophy-generation term scale with the Taylor microscale (cf. 
Tennekes & Lumley 1974), which is confirmed by our measurements: the Taylor 
microscales computed according to the conventional definition of A, from dissipation 
A, and from enstrophy generation A,, are all of the same order of magnitude, as is 
seen from table 9. Note that this is not a circular argument since A was obtained using 

7-2 
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4 M  8 17 30 38 64 90 B. layer y/S 

0.7 0.2 

h (mm) 3.5 4.6 6.6 7.3 9.3 11.3 8.2 6.3 
’ d  3.2 4.1 5.6 6.5 7.7 9.0 6.9 5.1 
A, 4.2 5.1 6.6 7.3 9.4 10.7 9.1 8.5 

TABLE 9. Comparison of different Taylor microscales in mm: 

The coefficients for computing A, and A, were chosen in such a way that the ratios A,lA and AJA 
became equ8al to 1 for isotropic turbulence provided that the skewness S,  = - ( I ~ u , / ~ x , ) ~ /  
((au,/axJP)i was chosen according to our experimental results to be equal 0.5. 

the information from one array only, while A, and A, were obtained using the 
information from all three arrays. Thus i t  is a good indication of proper resolution 
of these scales. It may therefore happen that the requirements for spatial resolution 
can be somewhat reduced unless one wishes to evaluate the dissipation of enstrophy, 
which scales with the Kolmogorov scale. This issue requires further careful 
exploration especially in view of the results by Wyngaard (1969) and Klewicki & 
Falco (1990), which claim that for adequate spatial resolution it is necessary that the 
probe scale should not exceed three Kolmogorov scales. In any case the presently 
existing technology allows the building of a probe which can be used for applications 
in atmospheric turbulence. In particular, we intend to perform turbulence 
measurements at the surface atmospheric layer. 

Our second major conclusion is related to the question: does turbulence have a 
generic, universal structure ‘1 We confirmed experimentally the strong tendency for 
alignment between vorticity and the eigenvector of the intermediate rate-of-strain 
tensor (discovered numerically by Ashurst et al. 1987 for quasi-isotropic and shear 
turbulence), both for turbulent grid flow and the outer part of the boundary layer. 
Our opinion is that this property is one of the important universal features of small- 
scale turbulent flows. Another universal property of three-dimensional turbulent 
flows is believed to be the prevalence of the vortex-stretching process over the vortex 
compressing and, closely related to it, the essential positiveness of the enstrophy- 
generating term. We have demonstrated this to be true via direct measurements of 
the enstrophy-generation term and the strong tendency for alignment (in the strict 
sense) between vorticity and vortex stretching vectors. The above results became 
possible through obtaining quantities like the eigenvectors of the rate-of-strain 
tensor quantities, which are independent of the system of reference. We have 
demonstrated the necessity of obtaining other invariant quantities like total 
dissipation and the enstrophy-generating term. Our suggestion is that quantities of 
this kind should be among the most appropriate to characterize the structural nature 
of turbulent flows, e.g. organized motion. 

Our main future efforts will be concentrated on improving the technique as 
mentioned above and its application to turbulent shear flows. 
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their kind hospitality during the summer of 1986 and for introducing two of us (A.T. 
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